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Synergistic benefits of intercomparison  
between simulated and measured radiances  
of imagers onboard  geostationary satellites 
 By S. J. Lee  and M.-H. Ahn  (Ewha Womans University)  

 

Observations from infrared channels of  
four  geostationary (GEO) satellite imagers  
are inter-compared by utilizing the  
radiative transfer model (RTM)
simulations with the input of two NWP  
models. The results highlight the
synergistic benefits of using NWP +  RTM  
methods  for the inter-calibration of GEO  
satellites by revealing features specific to  
a  particular  instrument  and  also  by  
indicating  uncertainties in the RTM and  
the NWP models. The details are 
described in [1] and a brief review of some  
of the results are reported here.   
Observations from the Advanced 
Meteorological Imager (AMI) on board 
the GEO-KOMPSAT-2A, the Advanced 
Himawari Imager (AHI) on the 
Himawari-8, the Advanced Baseline 
Imager (ABI) on the GOES-16 and 
SEVIRI flying with the Meteosat-11 are 
inter-compared using the NWP + RTM  
method [2]. To demonstrate synergistic  
benefits of using the method,  analysis  
fields from two NWP models  (the  Unified  
Model (UM) employed at the Korea 
Meteorological Administration and the  
ERA5 were utilized and the  model  
equivalents were prepared using the  
radiative transfer for TOVs (RTTOV) 
v.12.3 [3].  
The statistics of observations minus 
simulations (O–A) were analyzed over 
the clear-sky ocean as a function of time,  
space, observation angles, and scene  
temperatures for August 2019. 
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Figure Above shows SRFs of Ch 07–Ch 16 for AMI 
(black), AHI (blue), and ABI (green) and Ch 04–Ch 
11 for SEVIRI (pink) 

 

Overall O–A statistics (Table 1) show that  
there is no significant difference among  
the four imagers,  displaying positive  
differences (in red color) in most of the  
water vapor channels and negative 
differences (in blue color) in the rest of  
the infrared channels. When compared to 
the GSICS results, the statistics for 
window channels (IR8~IR12)  present  
slightly larger negative bias, and this is  
mostly attributed to residual clouds.  
Revisiting this issue with a stricter cloud  
detection scheme (conducted  after the 
publication of  [1]) provided much 
improved statistics, e.g., O–A for IR11  
ranging from 0 to  -0.05 K with respect to 
the ERA5.   The results also show a  
couple of interesting features that need to  
be addressed.   

 

First,  both NWP models have  positive  
bias with respect to the observations in 
the water vapor channels (except for  
ERA5 in WV3),  confirming  the  wet  bias  
in  NWP  model  fields  as  was  also  found  in  
the  previous  studies  [4],  [5].  In addition,  
the biases with   

doi: 10.25923/1yfk-a604 

Vol. 15 No 4, 2022 

mailto:manik.bali@noaa.gov
mailto:sjlee2013@ewha.ac.kr
mailto:saket_aero@ku.edu
mailto:ning.lei@ssaihq.com
mailto:hhkieffer@gmail.com
mailto:mstk-a.imai@frontier.hokudai.ac.jp
mailto:Xiangqian.Wu@noaa.gov
mailto:jbradburn@albany.edu
mailto:Stephanie.Halton@sdl.usu.edu
mailto:sjlee2013@ewha.ac.kr


2 

      

                                                                                                                                                                                     
 

          

 
   

 

 
 

                     
                  

                      
                  

                   
             

                    
                  

                 
                  

                
                   

                   
  

 Channels 
 NWP model 

 Instrument 
AMI,AHI, ABI  SEVIRI   nicknames AMI  AHI  ABI  SEVIRI  

 Ch07  Ch04  SW38  UM  -0.55 (0.66)   -0.97 (0.61)  -0.69 (0.67) -0.08 (0.48) 
ERA5  -0.37 (0.53) -0.75 (0.49) -0.48 (0.55) 0.06 (0.40)  

 Ch08  Ch05  WV1  UM 0.58 (0.86)  0.35 (0.88)  0.43 (0.73)  0.67 (0.86)  
ERA5  0.38 (0.76)  0.16 (0.77)  0.23 (0.50)  0.34 (0.66)  

 Ch09   WV2 
 UM 0.44 (0.82)  0.47 (0.85)   0.48 (0.71)   

ERA5  0.16 (0.71)  0.20 (0.73)  0.25 (0.48)   

 Ch10  Ch06  WV3  UM 0.08 (0.68)  0.13 (0.69)  0.13 (0.55)  0.27 (0.65)  
ERA5  -0.21 (0.58) -0.15 (0.58) -0.11 (0.38) -0.07 (0.50) 

 Ch11  Ch07 IR8   UM -0.67 (0.49) -0.65 (0.44) -0.50 (0.33) -0.63 (0.44) 
ERA5  -0.74 (0.45) -0.70 (0.39) -0.58 (0.29) -0.70 (0.40) 

 Ch13  IR10   UM -0.31 (0.42) -0.34 (0.40) -0.27 (0.32)  

ERA5  -0.35 (0.35) -0.38 (0.33) -0.32 (0.27)  

 Ch14  Ch09 IR11   UM -0.22 (0.44) -0.26 (0.43) -0.15 (0.32) -0.20 (0.41) 
ERA5  -0.34 (0.39) -0.38 (0.37) -0.27 (0.26) -0.31 (0.35) 

 Ch15  Ch10 IR12   UM -0.30 (0.47) -0.49 (0.46) -0.17 (0.33) -0.34 (0.46) 
ERA5  -0.49 (0.42) -0.68 (0.42) -0.36 (0.28) -0.58 (0.41) 

 Ch16  Ch11  CO2 
 UM -0.17 (0.41) 0.05 (0.40)  -0.04 (0.27) -0.06 (0.35) 

ERA5  -0.36 (0.39) -0.14 (0.36) -0.22 (0.23) -0.33 (0.31) 

 # of matches  UM 1.7×107  2.1×107  1.7×107  1.5×107  
ERA5  4.4×106  5.4×106  7.1×106  3.9×106  

  

   

ABI, and SEVIRI (from left to right) compared with the simulated UM (top)
and ERA5 (bottom) averaged on the model ocean grids in August 2019,
for the channel of WV3.

doi: 10.25923/1yfk-a604 

GSICS Quarterly: Winter Issue 2022 Volume 15, No. 4, 2022 

Table1: Mean O–A (and standard deviation in parentheses) of AMI, AHI, ABI, and SEVIRI compared with the two NWP models for August, 2019 (unit: K). 

respect to the UM are globally wetter 
compared to those from the ERA5. 
This feature can be also found in the 
spatial distribution of the biases of 
AMI, AHI, ABI, and SEVIRI for WV3 
(Figure 1). The figure displays overall 
positive biases with the UM (top) and 
negative biases with the ERA5 
(bottom), indicating the UM is more 
humid than the ERA5 in the mid-
troposphere. Similar pattern was also 
found in WV1, the upper tropospheric 
water vapor channel [1]. 

Second, the spatial distribution of O–A 
for the CO2 channels (Figure 2) reveal 
that a striping issue exists not only in 
AMI but also in AHI and ABI. Striping 
is clearly seen in the three advanced 
imagers regardless of the type of NWP 
models, while no stripes are found in 
SEVIRI. Usually, it is not easy to 
discern or identify such feature from 
one satellite imagery scene or from an 
O–A map for a short period of time, but 
the stripes become clearer when the 
analysis is done over sufficiently long 

period of time using NWP model data. 
The high spatial resolution of the 
imagers and NWP models is another 
contributor that enables the 
visualization of such a feature. 

Lastly, there was an obvious satellite 
zenith angle dependence of O–A in 
IR8, whereas other infrared channels 
did not show such significant angle-
dependency. Since the dependency 
appears not just in a specific instrument 
but in all instruments and with both 

Fi Spatial distributions o f clear-sky O–A (unit: K) for AMI, AHI, gure 1.  Figure 2. Same as in Figure 1 but for the channel of CO2. 
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NWP  models,  the  root  cause  is  most  
in  the  sea  surface  emissivity  model  [6]  
Radiative  Transfer  Model  (CRTM)  by  
the  authors,  and  it  was  found  that  the  
dependency  decreases  by  up  to  0.3  K  at  
high  zenith  angles  for  AMI  IR8  with  
the  CRTM,  suggesting  the  association  
of  this  issue  with  the  RTM  uncertainty.  
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Spectral Reflectance Estimation of UAS Multispectral 
Imagery Using Satellite Cross-Calibration Method 
By Saket Gowravaram, Haiyang Chao, Andrew Molthan, Tiebiao Zhao, Pengzhi Tian, Harold Flanagan, Lori Schultz, and Jordan 
Bell (University of Kansas) 

Introduction 
Unmanned Aircraft Systems (UAS) are 
widely used for many multispectral 
remote sensing applications including 
disaster damage assessment [1,2], 
precision agriculture [3], and fire 
monitoring [4]. UAS can be 
programmed to fly autonomously at 
low altitudes under clouds and acquire 
multispectral images of a field at high 
spatial and temporal resolutions. 
However, one of the biggest challenges 
for UAS based multispectral remote 
sensing is the retrieval of reflectance 
from orthorectified UAS images in 
digital numbers (DN). Most existing 
UAS reflectance estimation techniques 
require reflectance target boards and 
spectroradiometers for each UAS 
survey mission which can be 
inconvenient and very expensive for a 

majority of UAS end users. 

This article introduces a satellite-based 
cross-calibration (SCC) method for 
spectral reflectance estimation of UAS 
multispectral imagery. The SCC 
method provides a low-cost and 
feasible solution to convert high-
resolution UAS images in DN to 
reflectance when satellite data is 
available. The main objective is to 
calibrate UAS DN images at high 
spatial resolution to reflectance using 
satellite surface reflectance (SR) data 
of the same area at lower spatial 
resolution as a reference. This method 
is demonstrated and validated by using 
a multispectral data set, including 
orthorectified KHawk UAS DN 
imagery and Landsat 8 Operational 
Land Imager Level-2 surface 

reflectance (SR) data over a 
forest/grassland area. The estimated 
UAS reflectance images are compared 
with National Ecological Observatory 
Network (NEON) Imaging 
Spectrometer SR data collected by a 
manned aircraft for validation. NEON 
is a continental-scale ecological 
observation facility project funded by 
NSF which covers 81 field sites across 
the USA annually. The proposed 
method will be beneficial to research 
groups who want to: (1) collect new 
UAS data but do not possess accurate 
spectroradiometers and ground target 
boards, (2) calibrate existing UAS data 
collected without a ground reflectance 
reference, and (3) study the radiometric 
relationships between multi-scale 
remote sensing data from satellite, 
manned aircraft, and UAS for enhanced 
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earth observations. More details can be 
found in Gowravaram et al. (2021) [5]. 

Satellite-Based Cross-Calibration 
Method 

Given an orthorectified UAS image X′ 
in DN at high spatial resolution (kM × 
kN pixels) and a satellite 
atmospherically-corrected reflectance 
image Y at medium spatial resolution 
(M × N pixels), a cross-calibration 
function F(X′) can be identified for 
each spectral band that can convert 
UAS images in DN at high spatial 
resolution to spectral reflectance. Here, 
k is the ratio between the spatial 
resolutions of satellite and UAS images 
which can be derived from the data set. 
For example, k is 30 if the spatial 
resolutions of satellite and UAS images 
are 30 m and 1 m, respectively. The 
main steps of this method include: 

1. UAS image resampling: Resample
the high-resolution UAS image
(X′) to a medium-resolution image
(X) to match the spatial resolution
of the satellite image (Y). Existing
methods like nearest neighbor,
bilinear, or bicubic methods can be
used. Bicubic interpolation is used
in this work.

2. Pixel selection: Select UAS and
satellite pixel pairs at medium
spatial resolution, (𝑋𝑋1, 𝑌𝑌1), which
is a subset of the original UAS and
satellite image pair, (X, Y). Here,
the objective is to exclude pixels

that can potentially induce 
nontrivial errors in the function 
identification. High error pixels 
can be rejected using metrics such 
as sub-pixel coefficient of 
variation and shadow pixels as 
explained in detail in the section 
“Pixel Selection” in Gowravaram 
et al. (2021) [5]. 

3. Function identification: Use least-
squares optimization methods to
find the optimal cross-calibration
function based on selected pixel
pairs.

4. UAS reflectance estimation: Apply
the identified function to the high-
resolution UAS DN image (X′) and
finally obtain UAS reflectance
image (Y′).

Reflectance Estimation of 
KHawk UAS DN Images of 
Forest/Grassland Area in 
Kansas 

The proposed SCC method is validated 
using a UAS and satellite multispectral 
data set, shown in Figure 1. It includes 
orthorectified high-resolution (1 m) 
KHawk DN and medium-resolution (30 
m) OLI SR images all from the NIR
band. For function identification, both
Ordinary Least Squares (OLS) and
Weight Least Squares (WLS)
regression methods tested on the
selected pixel pairs (Figure 1 right).
The total error variance for NIR/red
bands was 0.0061/0.0156 and

0.0011/0.0025 for the OLS and WLS 
methods, respectively. Therefore, the 
WLS method is selected for function 
identification. 

Estimated KHawk Reflectance 
Validation Using NEON Imaging 
Spectrometer (NIS) Images 

The estimated KHawk reflectance 
images at 1 m spatial resolution are 
compared to NEON Imaging 
Spectrometer (NIS) SR images at the 
same resolution for validation, shown 
in Fig. 2. It is worth mentioning that 
comparing all the pixels between the 
two images is difficult due to pixel 
alignment and georeferencing 
uncertainties. KHawk orthorectified 
images are generated from many 
images and has a RMSE error of 4.72 
m. Six 3×3 m regions are manually
selected for comparison, including
three grass regions and three tree
regions. The region size (3×3 m) is
selected based on the average tree
canopy size observed in this data set.
Note that shadows are excluded from
the selected regions for a fair
comparison. The six NIS and KHawk
reflectance values and differences
between them are shown in Table 1.

Mean absolute error and RMSE were 
found to be 0.0243 and 0.0306 for the 
NIR band, and 0.0178 and 0.0163 for 
the red band. 

   
  4           
    

   
   

Figure 1. KHawk unmanned aircraft system and Operational Land Imager 
(OLI) near-infrared images of study area: orthorectified high-resolution KHawk 
digital numbers (DN) image (L), L8 OLI medium resolution SR (M), and KHawk 
DN vs L8 OLI SR scatter plot (R). UAS data was acquired 09:49–10:19 A.M. 
and L8 data was acquired 12:00 P.M. on June 7, 2017.  

  Figure 2.  Calibrated NIS SR image (L) and estimated KHawk NIR 
SR image (R).  
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Conclusions & Future 
Recommendations 

In this article, a low-cost and novel 
SCC method is proposed for 
reflectance estimation of raw UAS DN 
images. This method only utilizes 
publicly available data without using 
ground calibration targets or expensive 
spectroradiometers, which makes it 
highly feasible for many UAS end 
users. 

Future objectives include: (1) testing 
the effectiveness of the proposed 
method in other land cover; (2) 
development of ML-based algorithms 
for function identification; and (3) 
addressing the effects of spectral 
response difference in more detail; and 
(4) investigating the effect of BRDF
correction on UAS reflectance
estimation.

Reprinted with permission from the 
American Society for Photogrammetry 
& Remote Sensing, Bethesda, 
Maryland, asprs.org. 
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Deconvolution of SNPP VIIRS solar diffuser bidirectional reflectance distribution function 
on-orbit change factor 
By Ning Lei (Science Systems and Applications, Inc., Lanham, MD USA) and Xiaoxiong Xiong (NASA) 

The Visible Infrared Imaging 
Radiometer Suite (VIIRS) is an Earth-
observing satellite sensor [1]. Fourteen 
of the 22 VIIRS spectral bands are 
reflective solar bands (RSBs), covering 
wavelengths from 0.412 to 2.250 µm. 
The first VIIRS instrument is aboard 
the Suomi National Polar-orbiting 
Partnership (SNPP) satellite. 

We calibrate the RSBs through an 
onboard solar diffuser (SD) with 
calibration data collected during the 

time when the SD is fully solar 
illuminated [2]. The change in the SD 
bidirectional reflectance distribution 
function (BRDF) value since launch, 
known as the H-factor, is determined 
by the SD stability monitor (SDSM). 
When in operation, the SDSM observes 
the Sun and the sunlit SD at almost the 
same time. The ratio of the SDSM 
detector signal strengths at the SD and 
the Sun views is a measure of the H-
factor. The 8 SDSM detectors cover 
wavelengths from 0.412 to 0.926 µm. 

Because the SDSM detector spectral 
response function spreads in 
wavelength, the directly measured H-

mea factor, denoted by 𝐻𝐻SDSM, is the true H-
factor, denoted by 𝐻𝐻SDSM, convolved 
with the spectral response function [3]: 

mea 𝐻𝐻SDSM �𝜆𝜆𝑑𝑑, 𝑡𝑡, 𝜙𝜙�⃗ (𝑡𝑡)� =

∫
∞ 𝑑𝑑𝑑𝑑×SRSDSM(𝑑𝑑,𝑡𝑡,𝑑𝑑)ФSUN(𝑑𝑑,𝑡𝑡)𝐻𝐻SDSM�𝑑𝑑,𝑡𝑡,𝜙𝜙���⃗ (𝑡𝑡)�0 

∫∞ 𝑑𝑑𝑑𝑑×SRSDSM(𝑑𝑑,𝑡𝑡,𝑑𝑑)ФSUN(𝑑𝑑,𝑡𝑡)0 

, …(1) 

5 

Table 1. Reflectance differences between NIS and KHawk 

mailto:ning.lei@ssaihq.com
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where SRSDSM denotes the SDSM 
detector spectral response function, 𝜆𝜆𝑑𝑑 

is the detector center wavelength, t is 
time, 𝜙𝜙�⃗ (𝑡𝑡) is the solar angle at t, 𝜆𝜆 is 
the sunlight wavelength, d is the SDSM 
detector index, and ФSUN is the solar 
spectral power. SRSDSM(𝜆𝜆, 𝑡𝑡 = 0, 𝑑𝑑) is 
derived from the prelaunch 
measurements. 

mea To accurately deconvolve 𝐻𝐻SDSM to 
find 𝐻𝐻SDSM, we have developed an 
iterative algorithm [4]. This algorithm 
depends on the fact that each SDSM 
detector response function has a main 
peak so that in Equation (1) the integral 
under the peak dominates. We separate 
the integral in the numerator in 
Equation (1) into the in-band (cutoffs at 
1% of the peak value) and out-of-band 
parts and approximate the 𝐻𝐻SDSM over 
the in-band wavelengths by 
𝐻𝐻SDSM �𝜆𝜆𝑑𝑑, 𝑡𝑡, 𝜙𝜙�⃗ (𝑡𝑡)� to arrive at 

mea 𝐻𝐻SDSM �𝜆𝜆𝑑𝑑 , 𝑡𝑡, 𝜙𝜙�⃗ (𝑡𝑡)� = 
′ 𝐻𝐻SDSM �𝜆𝜆𝑑𝑑 , 𝑡𝑡, 𝜙𝜙�⃗ (𝑡𝑡)� ∫ 𝑑𝑑𝜆𝜆 × SRSDSM(𝜆𝜆, 𝑡𝑡, 𝑑𝑑)+in−band 

′ ∫ 𝑑𝑑𝜆𝜆 × SRSDSM(𝜆𝜆, 𝑡𝑡, 𝑑𝑑) × 𝐻𝐻SDSM �𝜆𝜆, 𝑡𝑡, 𝜙𝜙�⃗ (𝑡𝑡)� …(2) OOB 

Where 

′SRSDSM(𝜆𝜆, 𝑡𝑡, 𝑑𝑑) = 
SRSDSM(𝑑𝑑,𝑡𝑡,𝑑𝑑)ФSUN(𝑑𝑑,𝑡𝑡) 

∞ ….(3) 
∫ 𝑑𝑑𝑑𝑑×SRSDSM(𝑑𝑑,𝑡𝑡,𝑑𝑑)ФSUN(𝑑𝑑,𝑡𝑡)0 

We use the SDSM Sun view data to 
′find SRSDSM(𝜆𝜆, 𝑡𝑡, 𝑑𝑑) [3]. 

In the first iteration, we ignore the 
contribution from the out-of-band part 
to obtain 

𝐻𝐻SDSM�𝜆𝜆𝑑𝑑 , 𝑡𝑡, 𝜙𝜙�⃗ (𝑡𝑡); 1st� =
mea 𝐻𝐻SDSM�𝑑𝑑𝑑𝑑,𝑡𝑡,𝜙𝜙���⃗ (𝑡𝑡)� 

′ . …..(4) 
∫ 𝑑𝑑𝑑𝑑×SRSDSM(𝑑𝑑,𝑡𝑡,𝑑𝑑)in−band 

For the nth iteration (n>=2), 

𝐻𝐻SDSM�𝜆𝜆𝑑𝑑 , 𝑡𝑡, 𝜙𝜙�⃗ (𝑡𝑡); 𝑛𝑛th� = 
mea ′ 𝐻𝐻SDSM OOB�𝑑𝑑𝑑𝑑 ,𝑡𝑡,𝜙𝜙���⃗ (𝑡𝑡)�−∫ 𝑑𝑑𝑑𝑑×SRSDSM(𝑑𝑑,𝑡𝑡,𝑑𝑑)×𝐻𝐻SDSM�𝑑𝑑,𝑡𝑡,𝜙𝜙���⃗ (𝑡𝑡);(𝑛𝑛−1)th� 

′ 
in−band ∫ 𝑑𝑑𝑑𝑑×SRSDSM(𝑑𝑑,𝑡𝑡,𝑑𝑑) 

. … (5) 

We use a wavelength power law to 

Figure 1. Measured (solid lines) and 
deconvolved (dashed lines) SNPP VIIRS SD 
H-factors at the SDSM SD view, versus time
since the satellite launch. The SDSM
detector indexes are shown in the figure.

extrapolate 𝐻𝐻SDSM�𝜆𝜆, 𝑡𝑡, 𝜙𝜙�⃗ (𝑡𝑡); (𝑛𝑛 −
1)th� beyond the higher peak cutoff of
the SDSM detector 8 [4]. We iterate the
steps until the difference between the
deconvolved H-factors in successive
iterations is less than 0.0001. The
number of iterations to reach the
criterion is typically only 2 to 3.

Because within the spectral response 
function’s main peak, we used, in the 
equations above, a constant across the 
wavelengths to approximate 𝐻𝐻SDSM, we 
can improve the retrieval accuracy by 
removing the impact of the H-factor 
curvature in wavelength through adding 

𝛽𝛽HdeltaH = �1 − � − 
(𝑑𝑑𝑑𝑑/1μm)𝜂𝜂H 

𝛽𝛽H ′ ∫ 𝑑𝑑𝑑𝑑×�1− 𝜂𝜂H 
(𝑑𝑑,𝑡𝑡,𝑑𝑑)in−band �×SRSDSM �𝜆𝜆𝑑𝑑/1μm� ….(6) ′ ∫ 𝑑𝑑𝑑𝑑×SRSDSM(𝑑𝑑,𝑡𝑡,𝑑𝑑)in−band 

where 𝛽𝛽H and 𝜂𝜂H are obtained by fitting 
the H-factor wavelength power law to 
the originally retrieved values. 

The deconvolved H-factors are nearly 
the same as the respective directly 
measured H-factors at the wavelengths 
equal to or longer than 0.488 µm 
(detector 3), as shown in Figure 1.  But 
the deconvolved H-factors are 
significantly less than the respective 
measured H-factors at 0.412 µm 
(detector 1) and 0.445 µm (detector 2). 

Figure 2. Difference in percentage between the 
retrieved and the hypothetical true H-factors 
using our iterative algorithm (circles) and the 
direct method (crosses) [4]. The pluses indicate 
the difference between the measured and the 
hypothetical true H-factors. The true H-factor is 
1-0.0133/λ4 where λ is in micrometer. The
detector spectral response function is Gaussian
with the Gaussian width of 0.03 µm. The
measurements contain a Gaussian noise
having a Gaussian width of 0.25%.

These behaviors are due to the fact that 
the curvature of the H-factor versus 
wavelength curve becomes smaller 
toward longer wavelengths. 

To illustrate the accuracy of the 
iterative deconvolution algorithm, we 
use a true function of 1-0.0133/λ4 

where λ is in micrometer. The detector
measurements contain Gaussian noises 
that have a width of 0.25% of the true 
signal. Eight detectors’ spectral 
response functions are Gaussians with 
the same width of 0.03 µm. The 
respective peaks of the hypothetical 
detector response functions are at the 
respective design wavelengths of the 
VIIRS SDSM detectors (0.412, 0.445, 
0.488, 0.555, 0.672, 0.745, 0.865, and 
0.926 µm). Overall, the iterative 
algorithm yields much more accurate 
results than the popular direct method 
[4], especially at the two shortest 
wavelengths where the curvatures are 
the largest, as shown in Figure 2. The 
direct method’s results are significantly 
influenced by noise whereas the 
iterative algorithm’s results are much 
more stable. 

In addition to the accuracy and the 



      

                                                                                                                                                                                     
 

          
 

 

     

doi: 10.25923/1yfk-a604 

GSICS Quarterly: Winter Issue 2022 Volume 15, No. 4, 2022 

noise impact differences between the with Equation (7) to the F-factors  Sensing, 1, 199-223, Springer-Verlag: 
two approaches,  the direct method is  derived from  lunar observations  [3].  New York, USA.  
also much less flexible. In the example The M1 band detector F-factors thus  
shown in Figure 2,  the direct method calibrated differ by as large as 0.7%  [2] Fulbright, J., et. al. (2016). Suomi-

uses a linear  interpolation  /  from the F-factors calibrated by using NPP VIIRS  Solar Diffuser Stability 

extrapolation. A quadratic interpolation the directly  measured H-factor to  Monitor Performance.  IEEE Trans. 

makes the direct method much more , , 631-639; replace 𝐻𝐻  in Equation (7) and the  Geosci.  Remote Sens.  54
SDSM 

complex and a wavelength power law  doi: 10.1109/TGRS.2015.2441558. lunar F-factors. For the other  RSBs, the 
extrapolation makes the direct method differences are less. We believe that the 

[3] Lei, N.,  et. al.  (2020). SNPP VIIRS impossible.  calibration results with the deconvolved  
RSB on-orbit radiometric  calibration H-factors are more accurate. 

The deconvolved H-factors for the  algorithms Version 2.0 and the 
SNPP VIIRS are used to find the H- Our iterative deconvolution algorithm  performances, part  1: the algorithms.  J. 
factors for the telescope SD view [3]  can also efficiently retrieve other  Appl.  Remote Sens., 14, art-ID: 047501; 
denoted by 𝐻𝐻RTA, through the  underlying true values where the  doi: 10.1117/1.JRS.14.047501. 
following [3]  detector response functions have  

[4] Lei, N  and X. Xiong (2022). respective main peaks.   
𝐻𝐻SDSM×[1+𝛼𝛼RTA(1−𝐻𝐻SDSM)] Deconvolution of SNPP VIIRS Solar 𝐻𝐻RTA =  …(7) 

( ) ( ) 
                                                                                                

1+𝛼𝛼H 1−𝐻𝐻SDSM × 𝜑𝜑𝐻𝐻−𝜑𝜑0 References:  Diffuser Bidirectional Reflectance
Distribution Function On-orbit Change where 𝜑𝜑𝐻𝐻  is the solar azimuth angle in  [1] Murphy, R. P., et. al.  (2006). The Factor.  IEEE Trans. Geosci. Remotethe SD coordinate system and 𝜑𝜑0  is a  visible infrared imaging  radiometer Sens., 60, art-ID: 1000909; doi:reference angle [3]. We  find  𝛼𝛼RTA  by suite.  Earth Science Satellite Remote 10.1109/TGRS.2021.3092682. 

fitting the F-factors (1/gain) calculated  

Status of the SLIMED lunar model  
By Hugh Kieffer, Celestial Reasonings 

The basis for lunar calibration is  
that the Moon is well-aged and its  
spectral reflectance properties  are 
static to about 10−8  per annum [1],  
orders of magnitude better than 
diffuse standards. Lunar calibration 
has become a common technique,  
currently used  primarily for 
trending.  The lunar spectral  
irradiance model being used in most  
cases is the ROLO model [2]  based  
on  observations from a surface  
observatory.  Many irradiance 
observations of the Moon from  
space are now available and can  
contribute to a model of the Moon.  
SLIMED is a methodology the  
makes use of many sources to 
generate a model as close to  the  true  
Moon as  possible with  a minimum  
number of  terms; i.e.,  continuous in  
all geometric  dimensions and  
wavelength.  

Figure 1:  Simplified diagram of generation of a SLIMED  model.  Inside the red box are a few  iterations  
unweighting statistical  outliers.  The  loop  represented  by  the  red  arrow  is  typically  executed  15  times  
adjusting  the  empirical  gains  for  each  instrument  band.  

Although  the  core  of  the  SLIMED  
model  is  lunar  reflectance,  the  
product  is  a  lunar  spectral  
irradiance  at  standard  distances  in  

the  form  

where S0(λ,  t)  is  the  solar  spectral 

irradiance at 1 AU, the Hybrid  
Solar  Reference Spectrum [3] is  
used.  Variations  of both total and 
spectral  solar  irradiance  are  small  
but  well  known;  they  are  
optionally  included  at  the  fit  
and/or  calibration  stage.  The  
fraction  accounts  for  the  Moon’s  
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size  and  distances  to  the  Sun  and  can be any of  three  modes:  λ,  1/λ  or  
viewer.  The  three  terms  after  the  ln λ with λ in µm. A general  
dot  make  up  the  SLIM  model         of  diagram of the SLIMED system is  
lunar  disk-equivalent-reflectance:  a  in Figure 1.      The  amount  of  data  
function  of wavelength and of five  from  instruments  varies  widely.  To  
photographic angles represented by avoid  an  instrument  dominating  a  
P, the same angles  as used by SLIM  model,  a  “heft”  multiplies  
ROLO [2]. R0(λ)  is  the  high- the  weight  of  all  data  for  an  
resolution nominal Lunar  reflection  instrument  to  set  its  desired  total  
spectrum  (LRS)  based  on  weight.  The  SLIM  system  
laboratory  measurements of  currently  includes  data  submitted  
returned  Apollo  samples  [4,5];  the  by   teams  for  24  instruments:  
5%  breccia  mix  used  by  [2]  has  Surface:  ROLO  [2],  AeroNet  
been  retained.  L  is  a  libration  Mauna  Loa,  NIST  [6];  LEO:  
model  based  on  global  lunar maps  MODIS  Terra  and  Aqua,  Landsat-8  
of spectral  reflectivity made  from  OLI,       Hyperion,  Suomi  and  
observations  by spacecraft  orbiting  NOAA-20  VIIRS,  PLEIADES  A  
the Moon,  ’MapLib’.  These  maps  and  B;  GEO:  GOES  8:13  and  15  
were made at photometric  panchromatic,  GOES  16  and  17  
geometries quite different from the  ABI, SEVIRI  on  MSG  1  to 4;  
geometry of Earth-orbiting  Mars:  HiRISE.  Only  surface  and  
observations, but their  global  LEO  are  included  in  fits.  Each  
consistency should    provide  a  good  instrument  band  is  represented  by  
basis  for  estimating  the  effect  of  its         effective  wavelength  for  the  
viewer  direction  on  irradiance.  B  nominal  lunar  spectral  irradiance.  
carries  the  variation  of  the  lunar  Broad  bands  (∆λ/λ >  0.2)  are  not  
irradiance   over  angles and  included  in  fits  but  are  in  
wavelengths  as the sum of basis  calibrations (these could also be 
functions  made up of the geometric  represented by a few weighted  
angles and their product with effective wavelengths).  A gain 
polynomials             of  ’wave’  w,  which  factor for each instrument band  is  

Figure  2:  Calibration  of  several  instruments  (see  color  legend)  using  s  SLIMED  
model  including  MapLib  and  solar  variation.  

      

                                                                                                                                                                                     
 

          
 

       
     

     
        

    
    

    
      

      

 
  

 
  

 
  

   
  

 
 
 

  
  

 
 

    
    

      
  

    
    

      
     

 

 
   

 
 

  
 

  
    

      
     

     
        

 
 

 

adjusted as a model fit is iterated. 
The instruments in the SLIMED 
systems are simply those which 
were contributed, and hence 
somewhat arbitrary. Other teams 
are encouraged to submit 
observations. The SLIMED system 
is built to easily add instruments, 
which can improve the lunar model. 

Generating a model involves many 
decisions, the model used here 
represents my best judgment; it 
includes MapLib, solar variation, 
and 34 geometric terms; the mean 
absolute weighted residual over 
99,000 data points is 0.62%. The 
calibration results for GEO 
instruments are generally more 
noisy than LEO, and they have not 
been used in the model generation. 
All SLIMED models exhibit a drop 
in reflectance at the low and high 
wavelengths relative to the LRS, 
suggesting the need of an improved 
lunar reference spectrum. A 
manuscript describing the SLIMED 
system and its results has been 
submitted [7]. 

The band-average calibration results 
(reported irradiance divided by 
model irradiance, or gain bias) for 
all instruments that contributed to 
the model, plus the ABI’s and two 
other lunar models, are shown in 
Figure 2. Eight instruments cluster 
below 880 nm, within about 3% of 
the SLIMED model; all but MODIS 
view the Moon directly. This is 
encouraging compared to the 5:7% 
uncertainty assigned to the ROLO 
model, which is 0:9% lower than 
SLIMED. SeaWiFS is about -5%. 
VIIRS and MODIS view the Moon 
with scan mirrors at different angles 
than nadir and show large 
differences; their calibration must be 
better than indicated by lunar 
calibration. Possible causes of large 
lunar calibration biases could be 
hardware related, e.g., thermal load 



      

                                                                                                                                                                                     
 

          
 

 
 

changes  during  attitude  maneuvers  SLIMED  has  been  developed  in  a  [4] Sun,  2021,  The  TSIS-1 hybrid 
between nadir and lunar  look; or  proprietary  language  and  the  solar  reference  spectrum,  Geophys. 
change in optics from a      Z-axis  Res.  Lett.,  48:777–707 algorithm  to  generate  a  model  needs  

 

observation. Or they could be  due  to  be  converted  to a  generally- [5] Pieters,  C.M.  1999.  The  Moon  as 
to the method of extracting lunar  accessible form.  The algorithm to use  a  calibration  standard  enabled  by 
irradiance from a lunar  observation.  a model for calibration is much lunar  samples. 

http://www.planetary.brown.edu/pds/AThese large differences have been  smaller; both algorithms access the  
P62231.html largely ignored in the past as lunar  JPL  ephemeris.  My  hope  is  that  more   

calibration has been primarily used people  will  become  involved,  high- [6] Taylor,  L.A,  C.M.  Pieters,  L.P. 
for trending.   The SLIMED system  accuracy  lunar  observations  on  the  Keller,  R.V.  Morris,  and  D.S. 
includes trending with a choice of  horizon  will  prove  out, the methods  McKay,  2001,  Lunar  mare  soils: 
five  forms (combinations of linear  of extracting lunar irradiance from  Space  weathering  and  the major 
and asymptotic) smoothed  in time.  imaging will be refined, and thus the  effects  of  surface-correlated 
Trends and an associated ’quality accuracy and precision of lunar  nanophase  Fe.  Journal  of 
metric’  have been derived  for all  calibration will improve.  Geophysical  Research:  Planets, 

106(E11):27985–27999 bands of all instruments.  
 Observations can be  de-trended  References  
[7] C.E.  Cramer,  C.E.,  K.R.  Lykke, before inclusion in a  fit; done  only 

[1] Kieffer,  H.H.,  1997.  Photometric J.T.  Woodward,  and  A.W.  Smith, for Suomi-VIIRS in the model here.  
stability  of  the  lunar  surface,  Icarus, 2013,  Precise  measurement  of  lunar 

Sensitivity for determining trends is  
130,323–327 spectral  irradiance  at  visible 

better than 0.1%;  e.g., the scatter  wavelengths,  J.  Res.  Nat.  Inst. 
and annual oscillation seen in the  [2] Kieffer,  H.H  and  T.C.  Stone, Standards  and  Tech.,  118 
SWIR bands of OLI using ROLO  2005.  The  spectral  irradiance  of  the  
calibration are gone using this  Moon,  Astron.  Jour.,  129:2887–2901 [8] Kieffer,  H.H,  Multiple 
SLIMED  model.  Trends  are  large   Instrument  based  Spectral [3] Coddington,  O.M.,  E.C.  Richard, 
only  for  the  early  GOES  Irradiance  of  the  Moon,  2022,  J.  Ap. D. Harber,  P.  Pilewskie,  T.N. Remote  Sensing,  submitted  Dec. instruments  and  the  first  VIIRS.   Woods,  K.  Chance,  X.  Liu,  and  K.  
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Lunar  Calibration for  a Microsatellite Sensor based
on SELENE/SP model  
By Masataka Imai  (Kyoto Sangyo University), Junichi Kurihara (Hokkaido University), and Toru Kouyama  (National Institute of 
Advanced Industrial Science and Technology)  
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. 

Earth observation by nano  /  
microsatellites has been developing 
rapidly over the past decade.  However,  
onboard calibration hardware  (e.g.,  
solar diffuser panels, calibration 
lamps), cannot be equipped on nano  /  
microsatellites due to size limitations.  
Lunar calibration, which utilizes the  
Moon as a reference source, is a 
relatively new radiometric calibration 
method for  optical sensors, and it can 
provide an alternative measure to 
onboard calibration for  
nano/microsatellites. The U.S.  

9 

Figure 1.  Moon images  (165 × 124 pixels) captured by the OOC-3  (555 nm)  
band (left)  and simulated by the SP model (right).  

http://www.planetary.brown.edu/pds/AP62231.html
http://www.planetary.brown.edu/pds/AP62231.html
mailto:mstk-a.imai@frontier.hokudai.ac.jp
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Figure 2.  Temporal  changes in the normalized observation-to-simulation irradiance ratio   (OSR). The ROLO (green) and SP (blue) based OSR are shown in OOC-3 and -4 and 
dashed lines are linear regressions.  

Table 1: Results of the linear regression 
analysis. 

Geological Survey in Flagstaff 
established the ground-based RObotic 
Lunar Observatory (ROLO) and 
developed a Moon model (Kieffer and 
Stone, 2005), which can predict the 
irradiance of the Moon. While the 
precision of the ROLO model has been 
evaluated over a wide phase range in 
many studies (e.g. Stone, 2008), it has 
been pointed out the ROLO model has 
much larger discrepancies to other 
models (Keiffer, 2022). Although the 
ROLO model practically shows 
stable performance for evaluating 
relative values under the same phase 
angle condition, there could be a bias in 
absolute values. Thus, further inter-
model comparisons are necessary for 
improving the accuracy of Moon 
models. Recently, another Moon model 
was developed using hyperspectral data 
obtained by the Spectrum Profiler (SP) 
onboard the SELENE Japanese Moon 
orbiter (Yokota et al., 2011; Kouyama 
et al., 2016). The SP model can 
reproduce the global brightness against 
any solar illumination and viewing 
condition for any Moon location 
(including the opposite side). 

In this study, we applied lunar 
calibration to a multispectral sensor, 
Ocean Observation Camera (OOC), 
onboard a microsatellite named Rapid 
International Scientific Experiment 
Satellite (RISESAT) (Kuwahara et al., 
2011). The OOC is a two-dimensional 

10 

multispectral imager with four cameras 
(OOC-1: 405 nm /-2: 490 nm /-3: 555 
nm /-4: 869 nm), whose bandwidths are 
approximately 10–20 nm. Moon 
observations by the OOC started on 
August 16, 2019, after seven months of 
the commissioning phase, and were 
continued until December 2020. The 
Moon surface brightness varies largely 
at a phase angle |𝛼𝛼| ≤ 7˚ due to a strong 
backscattering or brightness opposition 
effect (Leach et al., 2019). Thus, Moon 
observations were carried out at an 
absolute phase angle of approximately 
10° to obtain the maximum brightness, 
avoiding the backscattering surge. 

The irradiance of the Moon at the 
satellite position at each observation 
time was simulated from both ROLO 
and SP models, and OOC sensitivity 
degradation was evaluated by 
calculating the observation-to-
simulation irradiance ratio (OSR). The 
SP model simulates the lunar surface 
radiance at each grid specified by the 
solar incident angle (𝑖𝑖), emission angle 
(𝑒𝑒), and phase angle (𝛼𝛼). The lunar 
surface radiance 𝑅𝑅SP [W m-2 μm-1 sr-1] 
is calculated as 

𝑅𝑅SP(𝜆𝜆) 
2𝐼𝐼Sun(𝜆𝜆) 1𝐴𝐴𝐴𝐴 

= 𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠 (𝜆𝜆, 𝑖𝑖, 𝑒𝑒, 𝛼𝛼) � �
𝜋𝜋 𝐷𝐷 

where 𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠 is the radiance factor 
derived from the SP data, 𝐼𝐼Sun is the 

solar irradiance [W m-2 μm-1] at a 
distance of 1 [AU], and 𝐷𝐷 represents 
the distance between the Sun and the 
Moon. It should be noted that the SP 
model covers 512.6−1600 nm whereas 
the ROLO model covers 350−2500 nm; 
thus, only OOC-3 and -4 were 
compatible with the SP model. 

Figure 1 demonstrates the Moon 
radiance map from the SP model. Since 
the SP model has a resolution of 0.5° × 
0.5° in lunar latitude and longitude 
(Kouyama et al., 2016), the SP model 
can provide a precise disk-resolved 
Moon radiance map. Therefore, even if 
an optical sensor’s FOV is smaller than 
the full disk, the SP model can be 
utilized for the OSR calculation by 
addressing pixels in the observed image 
at high resolution. 

The integrated Moon irradiance 𝐼𝐼 [W 
m-2 μm-1 ] over the disk both for
observation and the SP model-
simulated images were calculated as
𝐼𝐼(𝜆𝜆) = ∑ 𝑅𝑅𝑗𝑗 (𝜆𝜆) 𝜔𝜔, where the subscript𝑗𝑗 

𝑗𝑗 indicates the 𝑗𝑗-th pixel including the
Moon disk region, 𝑅𝑅𝑗𝑗 is the radiance,
and 𝜔𝜔 is the instantaneous FOV of the
pixels (as for OOC (1.483×10-4)2 [str]).

Figure 2 shows the temporal variations 
in the OSR normalized by the data 
obtained at the first month. While there 
were 0.5–1.3% of sensitivity variations 
in the standard error and >1% of 



      

                                                                                                                                                                                     
 

          
 

 

 
  

 

 
  

 

 
 

 
 

 

 

 

 
 

 

 

 

 
  

 
  

 
 

 

doi: 10.25923/1yfk-a604 

GSICS Quarterly: Winter Issue 2022 Volume 15, No. 4, 2022 

deviation in each month,  the estimated  calibration of hyperspectral and  Leach, N., Coops, N.C., and  
inclinations of the  regression line were  multispectral sensors. Planetary and  Obrknezev, N., 2019,  
roughly within the  range of  1% per  Space Science 124, 76–83.  Normalization method for multi-
year. Therefore, no significant sensor  https://doi.org/10.1016/j.pss.2016.0 sensor high spatial and temporal  
sensitivity degradation during the  16 2.003  resolution satellite imagery with  
months of the Moon observation period radiometric inconsistencies.  
was confirmed (Table 1). The Kouyama, T., et al.,  2017, Moon Computers and Electronics in 
difference between  the  two models  was  observations for small satellite  Agriculture  164, 104893.  
< 1 %, and it was the same magnitude  radiometric calibration, in: 2017  https://doi.org/10.1016/j.compag.20 
as Kouyama et al. (2017) achieved to IEEE International Geoscience and  19.104893  
measure relative sensor degradation on Remote Sensing Symposium  
the order of  0.1% with the SP  model. In  (IGARSS). Presented at the 2017 Stone, T.C., 2008, Radiometric  
conclusion, the SP model can provide  IEEE International Geoscience and  calibration stability and inter-
an efficient radiometric calibration tool Remote Sensing Symposium  calibration of solar-band 
for a sensor onboard a  microsatellite.  (IGARSS), IEEE, Fort Worth, TX,  instruments in orbit using the  moon,  

pp. 3529–3532.  in: Earth Observing Systems XIII.  
References:  https://doi.org/10.1109/IGARSS.20 Presented at the Earth Observing 

17.8127760  Systems XIII, International Society  
Kieffer, H.H., and Stone, T.C., 2005, for Optics and Photonics, p.  

The Spectral Irradiance of the Kuwahara, T., et al., 2011, Satellite 70810X.  
Moon. AJ 129, 2887–2901.  system integration based on Space  https://doi.org/10.1117/12.795227  
https://doi.org/10.1086/430185  Plug and Play Avionics, in: 2011 

IEEE/SICE International  Yokota, Y., et al., 2011, Lunar  
Kieffer, 2022. Status of the SLIMED  Symposium on System Integration  photometric properties  at 

lunar  model, GSICS Quarterly  (SII). Presented at the 2011 wavelengths 0.5–1.6μm  acquired by  
Newsletter, DOI: 10.25923/1yfk- IEEE/SICE International  SELENE Spectral Profiler and their 
a604  Symposium on System Integration dependency on local albedo and 

(SII), pp. 896–901.  latitudinal zones. Icarus 215, 639– 
Kouyama, T., et al., 2016, https://doi.org/10.1109/SII.2011.61 660.  

Development  of an application 47568  https://doi.org/10.1016/j.icarus.201 
scheme for the SELENE/SP lunar 1.07.028  
reflectance model for radiometric 

NEWS IN THIS QUARTER 

GOES-T Launched 
By Xiangqian (Fred) Wu, NOAA 

Geostationary 
Operational 
Environmental 
Satellite T 
(GOES-T) was 
launched at 
16:38 EST on 
March 1, 2022, 
from Cape 
Canaveral, FL 

(Figure 1). It will be renamed as 
GOES-18 after reaching its orbit, and 
replace the ailing GOES-17 as 
GOES-WEST once commissioned. 
Extraordinary effort has been 
planned to make the Advanced 
Baseline Imager (ABI) date from 
GOES-18 available for NOAA 
operation before August 2022, which 
will be one of the most stressful time 

for GOES-17 ABI. These include 
accelerating the Post Launch Test 
(PLT) and Post Launch Product Test 
(PLPT), drifting away from the test 
site before completing all the tests, 
and delivering GOES-18 ABI data 
with GOES-17 data (“interleaving”) 
before it is operational 

11 
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ACCURACy: Adaptive Calibration of CubeSat Radiometer 
Constellations 
By John W. Bradburn and Mustafa Aksoy, Department of Electrical and Computer Engineering, University at Albany – State 
University of New York Albany, New York, USA 

Introduction 
Recent technological advances have 
enabled greater use of radiometer-
equipped CubeSats for remote sensing 
missions. While CubeSats provide 
advantages with their low cost, weight, 
and power, there are notable drawbacks 
which pose challenges in radiometric 
calibration. A primary concern is that 
CubeSats may not have sufficient 
thermal mass or radiation shielding to 
ensure receiver stability at all times, 
resulting in an increased sensitivity to 
ambient conditions. This problem is 
exacerbated when power cycling the 
receiver, as may be sufficient to achieve 
stability under certain conditions but 
will also affect the time during which 
the radiometer may collect useful 
information. These issues result in 
compromises between stability and data 
collection. Another challenge with 
radiometer-equipped CubeSats is their 
ability to frequently calibrate, as due to 
the restrictions on cost, weight and size, 
it may not be possible to equip them 

with external blackbody calibration 
targets or internal references. To 
achieve a constellation-level absolute 
calibration it is then necessary to collect 
vicarious Earth calibration 
measurements, using radiative transfer 
models (RTMs), as well as cold space 
calibration measurements. To address 
these problems, ACCURACy uses 
instrument-level telemetry data to 
cluster constellation members into time-
adaptive clusters of radiometers in 
similar states. By sharing calibration 
measurements between clustered 
radiometers, calibration data volume 
can be increased sufficiently to correct 
gain drifts and maintain low 
uncertainties in calibrated brightness 
temperature estimates. 

ACCURACy Framework 

ACCURACy is a framework 
consisting of three modules. The flow 
of data between these modules is 
depicted in Fig. 1. First, data is 

processed and clustered in the 
Clustering Module, which uses 
integrated telemetry data such as 
payload temperature measurements, 
age of instrument, and position to 
partition radiometers in a constellation 
into clusters. As radiometer gain and 
offset are typically determined by the 
physical temperature and age of the 
instrument, diometers which have 
similar temperature profiles and 
operational age may be considered to 
have similar gain and offset. This also 
must account for the hysteresis in the 
payload temperature of the instrument, 
and therefore in the radiometer gain, as 
the physical temperature will lag 
behind changes in ambient conditions 
due to saturation and other factors. 

Second is the Calibration Pool module, 
which gathers calibration measurements 
and times corresponding to each cluster. 
For each cluster, calibration data is 
shared from each radiometer in that 
cluster with all other members of that 

Figure 2.  (Left)  A  simulation of 35 CubeSat radiometers orbiting the  Earth.  Some of the  Figure 1. 
  

Data pipeline of ACCURACy, with data products shown 
CubeSats are on polar orbits, and some are orbiting close to tropical  regions near the  at each step. 

 
Input calibration data and time are the raw 

 
input 

 
(1), 

 equator. This  is  in part to ensure there are sufficient opportunities  for CubeSats to overlap  
  12        in the simulation. (Top  Right)  The calculated uncertainty (standard deviation)  of the which is preprocessed using PCA (2) before moving 

 
to the 

 calibrated antenna temperature over 1-minute windows using the baseline, conventional  Clustering Module (
 

3). Class labels associated with the cluster 
 
for 

 
SOTA,  and A CCURACy methods. (Bottom Right)  A  moving mean of the calibrated  each r

 
adiometer are used to form/update calibration pools (4), 

 
antenna temperature calculated  over a 1-minute window for the baseline, SOTA,  and which are then u

 
sed for calibrating e

 
ach radiometer 

 
(5). 

 ACCURACy methods.   
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same cluster. However, due to gain drift 
over time these accumulated calibration 
measurements may eventually produce 
errors when used to calibrate new 
cluster members, and so data will be 
only held in pools for a time interval 
determined by pre-launch laboratory 
data. This sub-module is able to detect 
error and uncertainty resulting from 
gain drift present in calibration 
measurements taken far apart and 
remove old calibration measurements or 
correct gain drifts. 

Lastly, is the Calibration module, which 
uses data from calibration data pools to 
calibrate each radiometer in the 
constellation with calibration 
measurements respective to their 
cluster. An N≥2-point linear least 
squares calibration structure is created 
to estimate the gain and offset [1-2]. 
ACCURACy is also able to 
mathematically quantify the errors and 
uncertainties in calibration products, 
and establish measurement traceability, 
and assess calibration accuracy, 
sensitivity, and stability [2-4]. Large 
numbers of calibration measurements 
will lso help identify any calibration 
drifts and their impacts on the calibrated 
products, by calibrating one vicarious 
calibration reference target using 
theremaining calibration measurements. 

Simulations and Initial Results 

ACCURACy has been used with 
synthetic data to intercalibrate a 
constellation of simulated radiometers 
and obtain brightness temperature 
estimates for each constellation 
member. Fig. 2 shows a constellation of 
35 simulated radiometers in orbit. The 

uncertainty and error in the estimated 
brightness temperatures of the 
simulated radiometers using 
ACCURACy perform better than the 
baseline, which is defined by 
calculating brightness temperature 
estimates for each radiometer using a 2-
point LLSE every second with a one 
second resolution – as shown in Fig. 2. 

Performance increase using 
ACCURACy can in part be attributed to 
averaging over a larger number of 
calibration data points. A conventional 
state-of-the-art (SOTA) intercalibration 
algorithm is also considered by 
calibrating multiple instruments using 
calibration measurements collected by 
them over approximately the same 
locations in orbit at approximately the 
same times [5-6]. This methodology is 
typically implemented as post-
processing for current radiometer 
constellations. The approach employed 
by ACCURACy, on the other hand, 
results in lower error and uncertainty in 
calibrated brightness temperature 
estimates for a simulated radiometer 
constellation compared to both this 
approach and the baseline calculation. 
The resulting RMSE and variance for 
the calibrated antenna measurements 
using the baseline, SOTA, and 
ACCURACy methods are recorded in 
Table 1. 
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Announcements 

Characterization and Radiometric Calibration for Remote Sensing (CALCON) 
annual meeting, September 12-15, 2022 
By Stephanie Halton (SDL), Jim Butler and Xiaoxiong (Jack) Xiong (NASA) 

The Characterization and Radiometric Calibration for Remote Sensing (CALCON) annual meeting will be held September 12-15, 2022 
at Logan, Utah. CALCON provides a forum for scientists, engineers, and managers to present, discuss, and learn about calibration, 
characterization, and radiometric issues within the microwave, IR, visible, and UV spectral ranges. GSICS members are encouraged to 
attend the conference. Abstracts are due April 8, 2022. For more details, please visit http://www.calcon.sdl.usu.edu/. 

GSICS-Related Publications 
Boesch, H., et al. "SI-traceable space-based climate observation system: a CEOS and GSICS workshop, National Physical Laboratory, 
London, UK, 9-11 Sept 2019." (2022). http://doi.org/10.47120/npl.9319 

Doelling, David R., Conor Haney, Rajendra Bhatt, Benjamin Scarino, and Arun Gopalan. 2022. ‘Daily Monitoring Algorithms to Detect 
Geostationary Imager Visible Radiance Anomalies’. Journal of Applied Remote Sensing 16 (1): 1– 
18. https://doi.org/10.1117/1.JRS.16.014502

Galib, Mohd, Sutapa Bhattacharjee, and Rishikesh Bharti. 2022. ‘Intercalibration of DMSP-OLS and NPP-VIIRS to Develop Enhanced 
Night-time Light Time-series for Evaluating the Urban Development Pattern of Major Indian Metropolitan cities’. 
https://doi.org/10.1002/essoar.10510603.1 

J. Tian and J. Shi, "A high-accuracy and fast retrieval method of atmospheric parameters based on genetic-BP," in IEEE Access, doi:
10.1109/ACCESS.2022.3151868.

Lee, Su Jeong, and Myoung-Hwan Ahn. 2021. ‘Synergistic Benefits of Intercomparison Between Simulated and Measured Radiances of 
Imagers Onboard Geostationary Satellites’. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 59 (12): 10725– 
37. https://doi.org/10.1109/TGRS.2021.3054030

Yang, W., H. Meng, R.R. Ferraro, and Y. Chen. ‘Inter-Calibration of AMSU-A Window Channels’. Remote Sensing 12, no. 18 
(2020). https://doi.org/10.3390/RS12182988. 

Yu, F., X. Wu, H. Yoo, H. Qian, X. Shao, Z. Wang, and R. Iacovazzi. 2021. ‘Radiometric Calibration Accuracy and Stability of GOES-
16 ABI Infrared Radiance’. Journal of Applied Remote Sensing 15 (4). https://doi.org/10.1117/1.JRS.15.048504. 

Submitting Articles to the GSICS Quarterly Newsletter:

The GSICS Quarterly Press Crew is looking for short articles (800 to 900 words with one or two key, simple illustrations), especially 
related to calibration / validation capabilities and how they have been used to positively impact weather and climate products. 
Unsolicited articles may be submitted for consideration anytime, and if accepted, will be published in the next available newsletter 
issue after approval / editing. Please send articles to manik.bali@noaa.gov. 
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